

Google I/O 2012

Security and Privacy Android Apps

- 2012/6/29(Day 3) 2:30PM 3:30PM (1時間)
- https://developers.google.com/events/io/sessions/gooio2012/107/
- http://youtu.be/RPJENzwel-A

Apps need to respect the data on Android devices

- People generally don't like giving out their personal details to strangers
- · Unscrupulous marketers want to mine mobile devices for data
 - User's phone number and email address could be harvested for SPAM
 - Same with the people on their contact lists
- Criminals want to steal your money
 - Sending premium-rate SMS messages from your phone
 - Intercept two-factor authentication messages

Insecure apps can grant unwanted access to data!

- When a user allows your app to access some aspect of their phone, they're trusting you with it
 - Please don't let them down!
- If your app requests permissions, a security vulnerability in your app can grant other apps access to the protected data or component without permission
 - Storing personal data in a world-readable file
 - Exporting an unprotected content provider
 - Logging personal data in logcat logs
- · It's not just other apps that you need to think about
 - Insecure wireless networks
 - Lost and stolen devices

Security for your app

The application is in its own process sandbox.

- Dalvik gives you the freedom to add your own crypto implementations
- Reflection can be used to bypass scoping
 private and protected may be ignored
- Native code can access and change data in the current process's Dalvik VM - don't rely on the VM to provide security!
- For inter-process communication, there are protections:
 - · Intent filters
 - Permissions
 - Signatures

Protecting app components

App components and the AndroidManifest.xml file

- Accessible app components are declared in the AndroidManifest.xml file
 - Activities <activity>
 - Services <service>
 - Broadcast receivers <receiver>
 - Content providers provider>
- Components specify what kind of Intent they accept with an <intent-filter> in the manifest
 - If a component has an <intent-filter> in the AndroidManifest.xml file, it's exported by default
 - Content providers are the exception: they export data by default
- Don't export app components unless you want other apps on the system to interact with your app

Limit access to components by external apps

This service has an intent filter so it must be explicitly marked as not exported

AndroidManifest.xml

9

Permissions for application components

Using permissions on exported components

- · There are different permission protection levels available for apps:
 - protectionLevel="normal" A lower-risk permission that gives requesting applications
 access to isolated application-level features, with minimal risk to other applications, the
 system, or the user. This is the default protection level.
 - protectionLevel="dangerous" A higher-risk permission that would give a requesting
 application access to private user data or control over the device that can negatively impact
 the user.
 - protectionLevel="signature" Can be used to limit access to components to only apps signed with the same certificate.

Checking permissions in code

Sometimes you want finer-grained control over how permissions are enforced

- The AndroidManifest.xml should be used whenever possible to declare required permission.
- However, if it's not possible, there are other ways:
 - Context.registerReceiver(...) can be used to register a BroadcastReceiver dynamically
 - There is a version of registerReceiver(...) which can be used to specify permission the broadcaster must hold for your dynamically-registered receiver to be invoked.
 - Context.checkCallingPermission(...) and Context.enforceCallingPermission(...) can be
 used in your source code to make sure the calling app holds the appropriate permission.
 - · This can be used to implement fine-grained permissions if needed.
- Avoid the confused deputy problem:
 - If your app is using its granted permissions to respond to another app, check that the calling app has that permission as well.

Protecting Android apps from users

Don't let users debug your apps

· android:debuggable

- Disabled by default
- Never leave this enabled in release code!
- Allows a user to debug your app even without source code
- Users with physical access can run code as your app and access your app's data

com.svox.pico

com.google android apps maps

com.google.android.partnersetup

if com.example.awesomeness

756

770

784

```
jlarimer-macbookair:~ jlarimer$ adb shell
shell@android:/$ run-as com.example.awesomeness sh
shell@android:/data/data/com.example.awesomeness $ id
uid=10060(app_60) gid=10060(app_60)
shell@android:/data/data/com.example.awesomeness $ ls files/
secret_data.txt
shell@android:/data/data/com.example.awesomeness $ cat files/secret_data.txt
SECRETS!
```


Storing data

Avoid exposing personal or protected data to other apps

- Protect personal data and data that requires a permission to access
 - Use MODE_PRIVATE for data files, shared preferences, and databases
 - openFileOutput(), openSharedPreferences(), and openOrCreateDatabase() create files in your app's private data directory
 - External storage (sdcard) is shared storage
 - Don't store personal or protected data on external storage without user consent

```
-rw-rw-rw- app_53 app_53 8 2012-06-18 13:39 secret_data.txt
-rw-rw-rw- app_53 app_53 81544 2012-06-18 21:43 private_info.txt
```

- You can't trust files that other apps can write to
 - Don't store code libraries that are world writable or on external storage
 - Don't store paths to code libraries in files that are world writable or on external storage
 - Don't process data from writable files in native code memory corruption vulnerabilities could allow apps to run arbitrary code with your app's ID

Protecting data files

There are no good reasons to make your app's private data files world readable

Good:

```
FileOutputStream fos = openFileOutput("private_data.txt", Context.MODE_PRIVATE);
SharedPreferences prefs = getSharedPreferences("data", Context.MODE_PRIVATE);
```

Bad:

```
FileOutputStream fos = openFileOutput("private_data.txt", Context.MODE_WORLD_WRITEABLE);
SharedPreferences prefs = getSharedPreferences("data", Context.MODE_WORLD_READABLE);
```


Data encryption doesn't solve all problems

Encryption is not authentication!

```
EncryptedMessage = Encrypt(K, "Login-OK=0")
```

Chosen Ciphertext Attack

AlteredMessage = EncryptedMessage ... XOR {..., 0x31}

Plaintext = Decrypt(K, AlteredMessage) = "Login-OK=1"

Use a peer-reviewed library like keyCzar Encryption is not authentication! java -jar KeyczarTool.jar create --location=/path/private.key \ --purpose=crypt --name="My Server Key" --asymmetric=rsa java -jar KeyczarTool.jar pubkey --location=/path/private.key \ --destination=app/res/raw/server_pub.key Crypter crypter = new Crypter(new AssetReader(R.raw.server_pub)); String ciphertext = crypter.encrypt("Secret message");

Protect network traffic

Attackers can eavesdrop on your app's communications

- Assume that there's a bad guy reading all of your app's network traffic
 - Public WiFi networks can't be trusted
 - Rogue cellular base stations can intercept mobile network data traffic
- · You can't trust data coming from a server
 - Web servers can be compromised
 - Network traffic can be vulnerable to man-in-the-middle (MitM) attacks that insert malicious data into the network stream

Practice safe networking

Encrypt your network requests

- Best practice is to always encrypt network communications
 - HTTPS and SSL can protect against MitM attacks and prevent casual snooping
 - Server certificate validity is checked by default

```
URL url = new URL("https://www.google.com/");
HttpURLConnection urlConnection = (HttpURLConnection) url.openConnection();
```

- Be very careful running code retrieved over the network
 - Use cryptographic signing for any DEX or native code libraries that you load dynamically
 - Better yet, don't run code from the network

Using WebView

Don't turn web problems into Android problems

- Watch out for cross-site scripting (XSS) and cross-site request forgery (CSRF) vulnerabilities if JavaScript is enabled on your WebView
 - JavaScript is disabled by default
 - If you run a web app in your Android app, you now have all of the security concerns of writing an Android app plus all of the security concerns with running a website
- · addJavascriptInterface() is dangerous
 - Avoid exposing protected or personal data to a JavaScript interface
 - Server or network could be compromised, you can't trust the code
 - If you do use it, ensure that you're using HTTPS for the WebView

Only request the permissions that your app requires

There are ways to access some Android capabilities without requesting permission

- Why minimize the amount of permissions your app requests?
 - One group of researchers found that 1/3 of apps request more permissions than they need
 - Security vulnerabilities can expose protected data
 - Users like apps that request few permissions
- · Permissions aren't required if you launch an activity that has the permission
 - Getting a picture from the camera
 - Sending an SMS through the SMS app
- · Permissions can be temporarily granted to apps by content providers
 - Letting the user pick a contact to share with your app

Get a camera pic without CAMERA permission

This prompts the user to take the picture, so they're in control of what your app gets

```
// create Intent to take a picture and return control to the calling application
Intent intent = new Intent(MediaStore.ACTION_IMAGE_CAPTURE);

// create a file to save the image
fileUri = getOutputMediaFileUri(MEDIA_TYPE_IMAGE);

// set the image file name
intent.putExtra(MediaStore.EXTRA_OUTPUT, fileUri);

// start the image capture Intent
startActivityForResult(intent, MY_REQUEST_CODE);
```


Start the SMS app with a filled-in destination and message Doesn't require the SEND_SMS permission

```
Uri smsNumber = Uri.parse("sms:5551212");
Intent intent = new Intent(Intent.ACTION_VIEW);
intent.setData(smsNumber);
intent.putExtra(Intent.EXTRA_TEXT, "hey there!");
startActivity(intent);
```


Let the user choose a contact with ACTION_GET_CONTENT

Retrieve the selected contact data without requesting **READ_CONTACTS**

```
Intent intent = new Intent(Intent.ACTION_GET_CONTENT);
intent.setType(Phone.CONTENT_ITEM_TYPE);
startActivityForResult(intent, MY_REQUEST_CODE);
void onActivityResult(int requestCode, int resultCode, Intent data) {
    if (data != null) {
       Uri uri = data.getData();
        if (uri != null) (
            try {
                Cursor c = getContentResolver().query(uri, new String[] {
                    Contacts.DISPLAY_NAME, Phone.NUMBER), null, null, null);
```


More minimizing requested permissions

More ways to reduce requested permissions

- Need a unique identifier?
 - TelephonyManager.getDeviceId() requires READ_PHONE_STATE permission
 - Hardware IDs are a poor choice for identity anyway see http://androiddevelopers.blogspot.com/2011/03/identifying-app-installations.html
 - Settings.Secure.ANDROID_ID doesn't require a permission, but still not perfect
- · To identify an installation of your app
 - Generate a UUID when your app starts and store it in shared preferences:
 - String id = UUID.randomUUID().toString();
 - Use Android Backup Service to save the shared preferences to the cloud
 - See: https://developers.google.com/android/backup/

Device Administration access

Designed for enterprise mobile device management (MDM) apps

- Device Administation API provides a lot of power, can be dangerous in the wrong hands
- Changing device security settings can have a serious impact on overall security
- Spend extra time auditing if your app can act as device administrator - you really don't want to leak these permissions!

Developer documentation on security

See these sites for more information on what we talked about today

- · Android Security Overview: http://source.android.com/tech/security/index.html
 - Describes how various security features are implemented in Android
- Designing for Security: http://developer.android.com/guide/practices/security.html
 - Teaches you how to write apps with security in mind
- Security and Permissions: http://developer.android.com/guide/topics/security/ permissions.html
 - SDK documentation on the Android permission system
- Application Security for the Android Platform: Processes, Permissions, and Other Safeguards, Jeff Six, O'Reilly Media

